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Finite difference schemes loose accuracy when free boundaries cross 
over rectangular grids. For a class of second-order equations, the 
leading error term at such a boundary can be eliminated by a simple 
correction strategy. This procedure works in any number of space 
dimensions and offers an alternative to (more costly and complicated) 
adaptive grid techniques. © 1992 Academic Press, Inc. 

1. INTRODUCTION 

We consider equilibrium equations of the form 

L~ + f + ( ~ )  =0,  (1) 

where 

I 0 ] if ~O~<0 
f+(ff)= 2~+O(~ 2) 

~ or ; i f ~ > 0 .  
+ o(~,) 

(2) 

Here, ~ is a function of any number of space variables, L a 
linear (or locally linearizable) second-order elliptic differen- 
tial operator (with lower order terms allowed) and ;t (>0)  
and/t  ( ¢ 0) smooth functions of the space variables (and/or 
of low derivatives of ~k). 

An important equation of this form is the Grad-Schl/iter- 
Shafranov equation describing magnetohydrodynamic 
equilibria in plasma physics, cf. [1,2] .  Reference [2] 
investigates the discretization errors of standard difference 
schemes for this equation and describes an early implemen- 
tation of the present correction method. 
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Straightforward numerical approximation of (1) with 
centered, second-order finite differences will give second- 
order accuracy away from the free boundary (along which 

= 0), but only first- or zeroth-order (dependent on the 
character o f f  + (q/) at the interface) whenever any "leg" of 
the finite difference stencil happens to cross over this bound- 
ary. Since the large errors occur only on a set of one order 
lower dimensionality than the full solution space, the 
global error will be one order higher, i.e., second or first 
order, respectively. In both cases, the error level will have 
increased significantly and the error will depend in a very 
irregular way on the location of the free boundary relative 
to the grid. This damages the convergence rate of, for exam- 
ple, multi-grid and makes enhancements like Richardson 
extrapolation or deferred correction impractical. 

The purpose of this paper is to point out a simple strategy 
to eliminate the leading error term at the free boundary. 
Figures 1-3 illustrate the general procedure in the special 
case of 

~20 ~20, 
,~x2 +-~y~ +,~+ =o (3) 

with 

2.=1, 0 + = { 0  if ~ < 0  
if ~,>~0. (4) 

Figure 1 displays one particular solution to this equation. 
Figure 2 shows the residual obtained when this solution is 
substituted into the standard second-order finite difference 
approximation to (3). Smooth second-order residuals arise 
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FIG. 1. Example of free boundary problem (demonstration problem 1): 

Equation. 

a2~l a2~l __  

ax 2 +~y2 + qJ+ =0. 

Solution shown. 

~Jo(r) r <~ r,. 
tp(x, y) = [ A  x log(r/r,.) r > r,., 

where 

r = ( x  2 + y2)1/2 

Jo(r), Bessel function of order zero 

re, first zero of J0(r), ~ 2.404826 

A = r(d/dr) Y0(r)l . . . .  . ,,~ - 1.248459. 

Free boundary. ¢(x, y )  = 0 along the circle 
2 x2+ y2=rc. 

t h r o u g h o u t  the  d o m a i n .  R e g a r d i n g  the l a rge  f i r s t -o rde r  ones  
a l o n g  the free b o u n d a r y ,  we no t e  

i. t hey  are  of  the  s ame  sign e v e r y w h e r e  ( sugges t ing  t ha t  
no  " loca l  a v e r a g i n g "  p r o c e d u r e  is l ike ly  to  work ,  n o r  a re  
f a v o r a b l e  c a n c e l l a t i o n s  l ike ly  to  occu r  in a p p l i c a t i o n s ) ,  a n d  

ii. t hey  d e p e n d  very  m u c h  on  jus t  h o w  the b o u n d a r y  
cuts  a c ro s s  each  finite difference s tenci l  (over  1 or  2 " legs"  of  
it, w h e r e  a l o n g  the  " legs ,"  a t  w h a t  angles  etc.).  

F i g u r e  3 i l lus t ra tes ,  h o w  a c o r r e c t i o n  p r o c e d u r e ,  a p p l i e d  to  
each  " leg"  s epa ra t e ly ,  al l  b u t  r e m o v e s  the  er rors .  The  p roce -  
dure ,  in this  spec ia l  case,  is de r ived  in Sec t ion  2 be low.  The  
c o n c l u d i n g  Sec t ion  3 d iscusses  di f ferent  g e n e r a l i z a t i o n s  ( to  
m o r e  gene ra l  e l l ip t ic  o p e r a t o r s ,  v a r i a b l e  coefficients,  m o r e  
space  d i m e n s i o n s ,  etc.).  T w o  m o r e  test  cases  a re  a l so  

p re sen ted .  
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FIG. 2. Calculation of residual in demonstration problem 1: Residual 
when the solution ¢(x, y) (with the square - 3 ~< x, y ~< 3 corresponding to 
array locations f ( i , j ) ,  -15<~i,j<~ 15) is substituted into the standard 
finite difference approximation to the equation: 

dx = 0.2 
for  i = - 15 to 15 step + 1 

for  j =  - 1 5  to 15step +1 
res(i,j) = ( f ( i +  1 , j ) + f ( i -  1,j) + f ( i , j +  1) + f ( i , j -  1) 

- 4.0*f( i , j )) /dx**2 
i f f ( i ,  j )  > 0.0 then res(i,j) = res(i,j) + f ( i , j )  
n e x t j  

next i 

(Negative o f  Residual shown). 

,OD t6  

o.oO  1°% 
0,00 o ~jO.O04" 

FIG. 3. Calculation of boundary corrected residual in demonstration 
problem 1: 

Correetion for  free boundary. Immediately before the next j--statement 
closing the innermost loop in Fig. 2, add the following lines: 

c = 2.0/(3.0"((f(i+ l , j ) - f ( i -  1,j))**2 + ( f ( i , j +  1 ) - f ( i , j -  1))*'2)) 
i f f ( i , j )* f ( i  + 1,j) < 0.0 then res(i, j )  = res(i,j) + c*abs(f(i + 1,j))**3 
i f f ( i , j )* f ( i  - 1,j) < 0.0 then res(i,j) = res(i,j) + c * a b s ( f ( i -  1,j))**3 
i f f ( i , j ) * f ( i , j  + 1) < 0.0 then res(i, j )  = res(i, j )  + c*abs(f(i , j  + 1 ))**3 
i f f ( i , j ) * f ( i , j -  1) < 0.0 then res(i,j) = res(i,j) + c * a b s ( f ( i , j -  1 ))**3 
(next j )  

(Negative o f  Residual shown). 
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2. DERIVATION OF CORRECTION 
PROCEDURE 

We consider first the special case of Eq. (3). To keep the 
notation simple, let the grid be uniform with spacing h in 
both directions. Assume further that the free boundary cuts 
two "legs" of a stencil centered at the origin (cf. Fig. 4a). 
"Locally," 4'(x,y) behaves like a plane which cuts the 
x-y-plane along the straight line 4 ' (x ,y )=0 .  With this 
assumption of local linearity (implying 24'0 = 4'1 + 4'3 = 
4 '2+04;  stencil points numbered as in Fig. 4a), the line 
0 ( x , y ) = 0  intersects the x- and y-axes at x = - 2 h 4 ' o /  
(01 - 4'3) and y = -2h4'o/(4'2 - 04), respectively. Its equa- 
tion is therefore 

01-4 '3x_ ~ 0 2 -  4'4 
2h 2h Y + 0 ° = 0 '  (5) 

where 

(7) 

The slope c30/~ i between the 4'(x,y)-plane and the 
x-y-plane can be calculated in any of a number of 
ways, e.g., (~2-4'3)/(1~21 + 1¢31), (4 '2-04)/( lI21 + 1~41), 
(4'2- 00)/(IG I + I~ol), etc., all giving ~0/~I = 91/2. Since 
(3) takes the same form in ~, I/- as in x, y-coordinates, the 
"sudden" activation of 4'+ as f increases through zero 
causes a jump of size - Z D  ~/2 in ~30 /~3 .  In the case shown 
in Fig. 4a, the values of 0~, i = 1, 2, are therefore 

2 
2 O  1/2 [¢e13/6 =~-~ 14'il 3 (8) 

Figure 4a shows a rectilinear i-t/-coordinate system, where 
t/is aligned with the free boundary and the i-axis is pointing 
into the area where 4' is positive. Noting the formula for 
the distance between a point and a line (Fig. 4b), the 
magnitudes of the i-coordinates at the five grid points (at 
locations (0, 0), (h, 0), (0, h), etc.) become 

less than what they would have been, had no free boundary 
been present. In the difference stencil approximating the 
Laplacian, these entries get divided by h 2. Every occurrence 
of the free boundary crossing a "leg" therefore reduces the 
residual by 

li, l=lO,I/O 1/2, i = 0 ,  1,2 .... ,4, (6) 2 
6h2D 10,13. (9) 

a 

~.\[]  

o , °  
~ , o  Ii 

. . .  

b 

line c~ z + ~ y + I~= 0 

[ az0 + 13y0+ 61 
d = ( 42 + 82) 1/2 

FIG. 4. (a) Notations used in the case of a 2D, 5-point finite difference 
stencil. (b) Distance between a point and a line. 

To restore full second-order accuracy, these corrections 
must be added back into the difference scheme. 

Other alignments between the boundary and the stencil 
can be considered, e.g., 0 o > 0  (i.e., with the 4'+-term 
included in the basic approximation), boundary crossing 
only one "leg" etc. It is easily verified that (9) takes the same 
form in all such cases. The code in Fig. 3 amounts to a direct 
implementati on of (9). 

3. GENERALIZATIONS 

What makes the simple one-term correction we have just 
described for Eqs. (3) and (4) more than just a curiosity is 
that the equation can be made very much more general 
without the correction procedure becoming more com- 
plicated. For example: 

i. f + ( 0 )  may be discontinuous when 4 ' = 0  (rather 
than having a discontinuous derivative) 

ii. L may include lower order terms (first derivatives 
etc.) 

iii. L may include variable coefficients; 20 + may be 
generalized t o f  + (0) 

iv. The second-order part of L may include mixed 
derivatives and have different coefficients in front of the dif- 
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ferent terms. Also, the grid spacing may differ in the different 
spatial directions 

v. There can be more (or fewer) than two space 
dimensions. 

To address these issues in turn: 

i. If the boundary irregularity in (3) and (4) is modified 
t o  

b 0.6 
0.4 0.0 
0.2 0.4 
0.0 02 
0,~ 0,0 

.;~ 0 2  

0.0 OA t . ---_ 

O.O t ~  02 

- .< 0,0 

FIG. 5. (a) Solution to demonstration problem 2; (b) Residual in 
demonstration problem 2; (c) Corrected residual in demonstration 
problem 2. 
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ei 

I azo  + 5 yo+ 7 z 0 +  6 I 
d = 

FIG. 6. (a) Notations used in the case of a 3D, 7-point finite difference 
stencil. (b) Distance between a point and a plane. 
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FIG. 7. Example of free boundary problem (demonstration problem 3): 

Equation. 

~21/I ~21~ ~2111 
cxx  Tg + c x r  ~--~y+ Crr 7 

+ CX ~x + C Y  ~y + CPL ~s + =O, 

where CXXetc .  depend on x and y as follows: 

C X X  = 1 6 X  2 - -  24xy + 8y 2 -Jr- 2x - 2y 

C X ' Y  = 3 2 x  2 - -  48xy + 1 6 y  2 + 8 x  - -  8.!; 

C Y Y =  16x 2 - 24xy + 8y 2 + 8x - 8y 

C X = 2 x - 2 y +  1 

C Y = 2 x - 2 y + 2  

CPL = 2x - 2y. 

Solution shown. 

c o s h [ ( - r )  /2] r~<O 

~/(x, y) = ~cos( r  1/2) 0 < r ~< 7l"2/4 
/ 
[ rU2 - r 1/2 r > ~2/4 

where 

r=  x2--  2xy + y2 + 2x - -  y. 

Free boundary. O(x, y ) =  0 along the curve r = rc2/4. (Note. Although 
changing analytical form, the solution remains smooth across the curve 
r = 0 . )  
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with 

H(O) = {~ if ~ < 0  
if ~p~>0, (11) 

the appropriate correction for each "leg" that crosses the 
free boundary becomes a slight modification of (9), namely, 

# 
2h2D ~s, I 0 ; I .  (12) 

Figures 5a, b, and c show the equivalent results to Figures 
1, 2, and 3 when the correction (12) is applied to 

~ l - r a / 4 ,  r<~2~ 
~(x, y) = Oog(4/r2) ' r > 2J '  r = (x 2 + yZ)t/2, 

(13) 

ii. The value of ~3~0/~ 3 (of Ozff/O¢ 2 in the case o f f  + (~O) 
discontinuous at ff =0)  will jump at the boundary with 
the same amount (to leading order) even if lower order 
derivatives are present. Since finite difference approxima- 
tions for first derivatives only involve a division by h (vs. by 
h 2 for second derivatives), such terms can be ignored as far 
as the corrections are concerned. 

iii. In the case of variable coefficients, we simply use 
their local values at the center of the stencil. The errors that 
this leads to will again be of a lower order. 

iv. If the second-order operator locally takes the more 
general form 

+ b #-ff~y+ e (14) a ~ @2, 

which solves (10) and (11) in the case o f#  = 1. 

0.3o L;O 
0.25 

0.~o I,li 
0,15 

O.lO I,lO 
0,05 

0.00 I,li 

~ _  o ),05 

s_  _ o ).00 

FIG. 8. Calculation of residual in demonstration problem 3: Residual 
when the solution if(x, y) (with the rectangle 0.5 ~< x ~< 2.0, 0.5 ~< y ~< 3.5 
corresponding to array locations f( i ,  j ), 0 ~< i, j ~< 30) is substituted into the 
standard nine point finite difference approximation: 

dx = 0.05 
dy =0.10 

for i = 0 to 30 step + 1 
f o r j = O  to 30 step + 1 

w ( - 1 ,  1) = - c x y ( i , j )  * 0.25/(dx* dy) 
w( 0, 1 )=  c y y ( i , j ) / d y * * 2  +cy( i , j )*O.5/dy  
w( 1, 1 )=  cxy( i , j )  * 0.25/(dx* dy) 
w ( - 1 ,  0 ) =  exx( i , j )  / dx**2 - c x ( i , j )  * 0.5/dx 
w( O, 0)= - e x x ( i , j )  * 2.0/dx**2 - c y y ( i , j )  * 2.0/dy**2 
w( 1, 0 ) =  cxx( i , j )  / dx**2 + cx( i , j )  * 0.5/dx 
w ( - 1 ,  - 1 ) =  cxy( i , j )  *0.25/(dx* dy) 
w( O , - 1 ) =  eyy(i,j) / dy**2 - cy ( i , j ) *O .5 /dy  
w( 1, - - 1 ) = - - e x y ( i , j )  *0.25/(dx*dy) 

res(i , j )  = 0. 
for k = - i to l step +1 

for l = - I to l step +1 
res(i , j)  = res(i, j )  + w(k, l ) * f ( i + k , j +  l) 
~ f ( i , j )  > O. then res(i,j) = res(i , j)  + cpl(i , j )*f( i , j )  
nex t l  

next k 
n e x t j  

next i  

the only essential difference that arises is that the transfor- 
mation between x, y- and 4, q-coordinates is no longer com- 
pletely trivial. To accommodate for this (and for different 
steps h and k in the x- and y-directions), we generalize the 
definition of D in (7) to 

(15) 

Although the derivation carries through slightly differently, 
the "end result" remains the same: the corrections are 

0.30 ).30 
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0.00 i.lf 
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~ _  o 1.0f 

. o }.00 

FIG. 9. Calculation of boundary corrected residual in demonstration 
problem 3: 

Correction for free boundary. Within the loops over i a n d j  but before the 
loops over k and l in the code in Fig. 8, add: 

ddx= ( f ( i  + 1, j )  - f ( i -  1,j))/(2.0* dx) 
ddy = (f(i, j + 1 ) -- f(i, j -  1 ))/(2.0" dy) 
d =cxx( i , j )*  ddx**2+cxy(i , j )*ddx*ddy+cyy(i , j )*ddy**2 

Within the loops over k and / ,  add: 

i f f ( i , j ) * f ( i + k , j +  1) <0.0  
then res(i , j )  = res(i , j)  + 

w(k, I)*epl(i,j )* abs(f(i  + k , j  + l))** 3/(6.0"d) 
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obtained by multiplying the (rightmost) expression in (8) 
with the corresponding weight in the finite difference stencil. 
The assumption that L is an elliptic operator (i.e., D is a 
positive definite form) protects against division by zero in 
(8) (if it were to happen that both ~1 = q;3 and ~02 = ~4, 
then ~0(x, y) is locally independent of both x and y and no 
correction at all is called for). 

v. The result in (8) remains the same and (15) 
generalizes in the obvious way. Figures 6a, b summarize the 
key geometric differences when going from 2D to 3D. As 
before, corrections have to be made for each stencil point 
which lies on the different side of the boundary than the 

center stencil point. 

Figures 7-9 show an example which includes variable 
coefficients, lower order terms as well as different grid 
spacings in the two space dimensions. The corrections are 

even more accurate in this case than in the previous test 
cases (Figs. 1-3 and Fig. 5), mainly because the curvature of 
the free boundary is lower. 

We should finally note that, in most applications, the 
issue is not finding the residual when ~ is given, but 
rather to solve for ~ (and/or 2 in the case of eigenvalue 
problems) under given boundary conditions. The correc- 
tions described here can either be incorporated directly 
into iterative methods (like Newton, Gauss-Seidel, SOR, 
Jacobi, multi-grid, etc.) or added separately in the form of 
iterative improvement (deferred correction). 
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